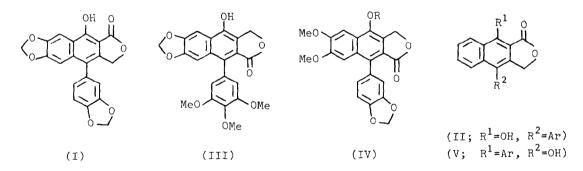
ON THE STRUCTURE OF TAIWANIN E

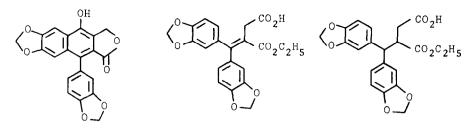

Z. Horii, M. Tsujiuchi, and T. Momose

Faculty of Pharmaceutical Sciences, Osaka University,

Toneyama 6-5, Toyonaka, Osaka-fu, Japan

(Received in Japan 3 February 1969; received in UK for publication 12 February 1969)

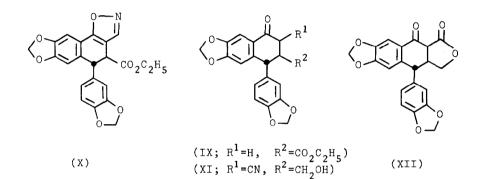
Taiwanin E, a phenolic lignan lactone isolated from <u>Taiwania cryptomerioides</u> Hayata, has been reported by Y.-T. Lin et al. (1) to have the structure (I) on the basis of the spectral evidences, and is the sole example of 1-hydroxy-2,3naphthalide types (II) among the hitherto known α -hydroxy-2,3-naphthalide lignans. Dehydropodophyllotoxin (III) (2), diphyllin (IV, R=H) (3), and justicidin A (IV, R=Me) (3) have been shown to be of 4-hydroxy-2,3-naphthalide type (V). We now report the nonidentity of taiwanin E with synthetic compound (I) and propose that taiwanin E is also of the type (V) on the basis of NMR spectral evidences.



The lactone methylene protons in the type (II) are expected, in NMR spectrum, to be shielded by the α -aryl nucleus whose orientation is perpendicular to the naphthalene ring. As shown in Table, this shielding effect is evidently observed in the aromatized 2,3-naphthalide lignans of natural or synthetic source. The lactone methylene of taiwanin E is obviously not shielded, whose value, τ 4.66, is closely similar to that of non-shielded taiwanin C, τ 4.62, suggesting that the structure of taiwanin E should be revised to (VI). The compound (I) synthe-

<u>Table</u>. Chemical shift of the lactone methylene in naphthalide lignans

substituent					type of naphthalide	
R ¹ R ²	R ³	R ⁴	Ar	solvent	$R^{1} \xrightarrow{R^{4} 0}_{R^{2}} \xrightarrow{R^{4} 0}_{R^{3} Ar}$	R^{1} R^{2} R^{3} R^{4} R^{0}
MeO MeO	Н	Н	3,4-(MeO) ₂ C ₆ H ₃	CDC13	τ 4.78 ^{a)}	τ 4.68 ^{a)}
-0CH20-	Н	Н	3,4,5-(MeO) ₃ C ₆ H	2 "	τ 4.92 ^{a)}	τ 4.65 ^{a)}
н н	Н	Н	3,4-(MeO) ₂ C ₆ H ₃	17		τ 4.57 ^{a)}
н -осн	20-	Н	3,4-(OCH ₂ O)C ₆ H ₃		τ 4.84 ^{b)} (helioxanthin)	
-0CH20-	Н	Н	n	(CD ₃) ₂ SO		τ 4.62 ^{C)} (taiwanin C)
11	Н	OH	11	(CD ₃) ₂ SO	(τ 4.66 ^{c)}) (taiwanin E)	
MeO MeO	Н	OH	"	CDC13	τ 4.83	τ 4.65 ^{d)} (diphyllin)
TT TT	"	OMe	"	11	τ 4.92 ^{e)}	τ 4.48 ^{f)} (justicidin A)
-0CH20-	н	ОН	3,4-(MeO) ₂ C ₆ H ₃	(CD ₃) ₂ SO	τ 4.77	
13	11	OMe	n	CDC13	τ 4.85	


a) See ref. 4.
b) See ref. 5.
c) See ref. 1.
d) Value in (CD₃)₂SO.
e) See ref. 3.
f) See ref. 6.

(VI)

sized showed actually the shielded lactone methylene signal at τ 4.82 in the NMR spectrum and was not identical in its constants (m.p. 251-255°, ν_{max} 3370, 1725) with taiwanin E [reported (1), m.p. 263-267°, ν_{max} 3420, 1745].

Synthesis of compound (I) was achieved by 8-step procedure from ethyl hydrogen benzhydrylidenesuccinate (VII), m.p. 138.5-139.5°, v_{max} (KBr) 1692(C=O) cm⁻¹. Sodium amalgam reduction of (VII) in bicarbonate buffer solution gave a half ester (VIII), (93%) m.p. 136-137°, which, on heating with acetyl chloride, afforded a tetralone (IX), (59%) m.p. 122-124°, v_{max} (KBr) 1721, 1671(C=O)cm⁻¹. Formylation of (IX) and subsequent treatment with hydroxylamine hydrochloride gave an isoxazole-ester (X), m.p. 176-177.5°, which was converted, by lithium aluminium hydride reduction and subsequent cleavage with sodium ethoxide, into a cyano-tetralone (XI), dec. p. 256-260°, v_{max} (CHCl₃) 2230(C=N), 1680(C=O)cm⁻¹.

Lactonization of (XI) with hydrogen chloride to (XII), m.p. $231-234^{\circ}$, v_{max} (CHCl₃) 1785, 1668(C=0)cm⁻¹, and dehydrogenation with selenium dioxide afforded (I).

Taiwanin E is no longer exceptional and it is noteworthy from the biogenetic point of view that all the natural α -hydroxy-2,3-naphthalide lignans are of 4-hydroxy-2,3-naphthalide types (V).

REFERENCES

- 1. Y.-T. Lin, T.-B. Lo, K.-T. Wang, and B. Weinstein, <u>Tetrahedron Letters</u>, 849, (1967).
- 2. W. J. Gensler, F. Johnson, and A. D. B. Sloan, <u>J. Am. Chem. Soc</u>., <u>82</u>, 6074, (1960).
- 3. Z. Horii, K. Ohkawa, S. Kim, and T. Momose, Chem. Comm., 653, (1968).
- L. H. Klemm, K. W. Gopinath, D. Hsu Lee, F. W. Kelly, E. Trod, and T. M. McGuire, <u>Tetrahedron</u>, 22, 1797, (1966).
- 5. R. S. Burden, L. Crombie, and D. A. Whiting, Tetrahedron Letters, 1035, (1968).
- K. Munakata, S. Marumo, K. Ohta, and Y.-L. Chen, <u>Tetrahedron Letters</u>, 4167, (1965).